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ABSTRACT

Random finite set provides a rigorous foundation for opti-
mal Bayes multi-target filtering. The major hurdle faced in
Bayes multi-target filtering is the inherent computational in-
tractability. Even the Probability Hypothesis Density (PHD)
filter, which propagates only the first moment (or PHD) in-
stead of the full multi-target posterior, still involves multiple
integrals with no closed forms. In this paper, we highlight
the relationship between Radon-Nikodym derivative and set
derivative of random finite sets that enables a Sequential
Monte Carlo (SMC) implementation of the optimal multi-
target filter. In addition, a generalised SMC method to im-
plement the PHD filter is also presented. The SMC PHD
filter has an attractive feature-its computational complexity
is independent of the (time-varying) number of targets.

Keywords: Multi-target Tracking, Optimal Filtering, Par-
ticle Methods, Point Processes, Random Sets, Sequential
Monte Carlo.

1. INTRODUCTION

Mahler’s Finite Set Statistics (FISST) [8], [9] provides a
systematic treatment of multi-sensor multi-target tracking
using random set theory. In FISST, the targets are treated
as a single meta target, called the multi-target state, and
the observations are treated as a single meta measurement,
called the multi-target measurement. The multi-target state
and multi-target measurement are modeled by random finite
sets whose statistical behaviour are characterised by belief
functions. The key to rigorously casting the multi-target es-
timation problem in a Bayesian framework is the notion of
belief density, based on set-derivatives and set-integrals.

Analogous to the single-target case, Bayes multi-target
tracking propagates the multi-target posterior density recur-
sively in time [9]. This involves the evaluation of multi-
ple set-integrals and the computational intractability is far
more severe than its single-target counterpart. The Prob-
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Hypothesis Density (PHD) filter [10], which only
gates the 1st moment (or PHD) of the multi-target pos-
requires much less computational power. Unfortu-

, this still involves multiple integrals that in gereral
o closed form.
quential Monte Carlo (SMC) methods are powerful
which have had an impact on optimal (Bayesian) fil-
[3]. The key idea in Monte Carlo methods is the ap-
ation of integrals by random samples from the distri-
of interest. To apply SMC methods to Bayes multi-

filtering in a principled way, we need to address firstly,
eaning of sampling from a belief density, and sec-
, how to approximate a belief density from these sam-
In this paper, we highlight the relationship between
-Nikodym derivative and set-derivative of random fi-

ets that provides answers to these questions. Con-
ntly, a generic SMC implementation of the optimal

multi-target filter can be proposed. In addition, a
SMC implementation of the PHD filter which offers
h cheaper and more practical alternative is also pre-
. Both algorithms are general enough to capture non-
non-Gaussian dynamics.
ction 2 of the paper briefly reviews the basics of ran-
nite set, optimal Bayes multi-target tracking and de-
s the PHD or 1st moment filter. Section 3 presents
implementations of the Bayes multi-target filter and
D filter. Simulation results are presented in Section 4
me concluding remarks are given in Section 5.

2. RANDOM FINITE SET AND BAYES
MULTI-TARGET FILTERING

-target state and multi-target measurement at time k
turally represented as finite sets Xk and Zk. For ex-
, if at time k there are M(k) targets xk,1, . . ., xk,M(k)

state space Es then, Xk = {xk,1, . . . , xk,M(k)} ⊆
imilarly, if N(k) observations zk,1, . . . , zk,N(k) in the
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observation space Eo are received at time k, then Zk =
{zk,1, . . . , zk,N(k)} ⊆ Eo where some of the N(k) obser-
vations may be due to clutter. Analogous to single-target
system, where uncertainty is characterised by modelling the
state and measurement by random vectors, uncertainty in
a multi-target system is characterised by modelling multi-
target state and multi-target measurement as random finite
sets (RFS) Ξk and Σk respectively. A formal definition of a
RFS is given in Section 2.1.

Given a realisation Xk−1 of Ξk−1, the multi-target state
at time k can be modelled by the RFS

Ξk = Sk(Xk−1) ∪ Nk(Xk−1) (1)

where Sk(Xk−1) denotes the RFS of targets that have sur-
vived at time k, Nk(Xk−1) = Bk(Xk−1) ∪ Γk, Bk(Xk−1)
is the RFS of targets spawned from Xk−1 and Γk is the
RFS of targets that appear spontaneously at time k. The
statistical behaviour of the RFS Ξk is characterised by the
conditional probability “density” fk|k−1(Xk|Xk−1) in an
analogous fashion to the Markov transition density for ran-
dom vector. The notion of probability density for RFS is
formalised in Section 2.1.

Similarly, given a realisation Xk of Ξk , the multi-target
measurement can be modelled by the RFS

Σk = Θk(Xk) ∪ Ck(Xk) (2)

where Θk(Xk) denotes the RFS of measurements generated
by Xk, and Ck(Xk) denotes the RFS of clutter. The statisti-
cal behaviour of the RFS Σk is described by the conditional
probability “density” gk(Zk|Xk) in an analogous fashion to
the likelihood function for random vector observation.

Let pk|k(Xk|Z0:k) denote the multi-target posterior “den-
sity”. Then, the optimal multi-target Bayes filter is given by
the recursion

pk|k−1(Xk|Z0:k−1)

=

∫
fk|k−1(Xk|X)pk−1|k−1(X |Z0:k−1)µs(dX) (3)

pk|k(Xk|Z0:k)

=
gk(Zk|Xk)pk|k−1(Xk|Z0:k−1)∫

gk(Zk|X)pk|k−1(X |Z0:k−1)µs(dX)
. (4)

where µs is a dominating measure to be discussed later in
Section 2.1. The main difference between the recursion (3-
4) and standard clutter-free single-target filtering is that Xk

and Zk can change dimension as k changes.

2.1. Random Finite Sets

Given a closed and bounded subset E of R
n, let F(E) de-

note the collection of finite subsets of E. A random finite
set (RFS) Ξ on E is defined as a measurable mapping

Ξ : Ω → F(E).
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robability measure P on the sample space Ω induces
ability law for Ξ, which can be specified in terms of

bility distribution or belief function. The probability
ution PΞ is defined for any subset1 T of F(E) by

PΞ(T ) = PΞ−1(T ) = P ({ω : Ξ(ω) ∈ T }).

robability law for Ξ can also be given in terms of the
function βΞ [6], [11], defined for any subset S of E

βΞ(S) = P ({ω : Ξ(ω) ⊆ S}).

e simplest class of RFSs are the Poisson point pro-
. A Poisson point process is a RFS Υ with the prop-
at for any k disjoint subsets S1, ..., Sk, the random
les |Υ ∩ S1| , ..., |Υ ∩ Sk| are independent and Pois-
Let vΥ(S) denote the mean of the Poisson random
le |Υ ∩ S|, then vΥ defines a (dimensionless) mea-
n the subsets of E, and is called the intensity measure
12]. The probability distribution PΥ is given by

PΥ(T ) = e−vΥ(E)
∞∑

i=0

vi
Υ(T ∩ Ei)

i!
,

vi
Υ denotes the ith product measure of vΥ [4]. For

bset S of E, let λK(S) denote the hyper-volume of
nits of K . The density of vΥ w.r.t. λK is called the
ity function or rate of Υ and has units of K−1. A
n point process is completely characterised by its in-
measure (or equivalently its intensity function).

direct extension of Bayesian reasoning to multi-target
s can be achieved by interpreting the density pΞ of a
as the Radon-Nikodym derivative of the correspond-

obability distribution PΞ with respect to an appropri-
minating measure µ, i.e

PΞ(T ) =

∫
T

pΞ(X)µ(dX).

ominating measure that is often used is an unnormalised
ution of a Poisson point process with a uniform rate
1 (intensity measure λ = λK/K) [4], i.e.

µ(T ) =
∞∑

i=0

λi(T ∩ Ei)

i!
, (5)

r any U ⊆ F(Es), V ⊆ F(Eo) let Pk|k(U|Z0:k) ≡
∈ U|Z0:k) denote the posterior probability measure,

1(U|Xk−1) ≡ P (Ξk ∈ U|Xk−1) and Pk(V|Xk) ≡
∈ V|Xk) denote the conditional probability mea-

which describes the multi-target Markov motion and
rement respectively. Then the multi-target posterior
y pk|k(·|Z0:k), transition density fk|k−1(·|Xk−1) and
ood gk(·|Xk) used in (3-4) are the Radon-Nikodym
tives of Pk|k(·|Z0:k), Pk|k−1(·|Xk−1) and Pk(·|Xk)
tively.

ere appropriate, subsets are assumed to be Borel measurable.



2.2. Finite Set Statistics

In this section, key concepts in finite set statistics (FISST)
and its relationship with conventional point process theory
are highlighted. In particular, we outline how the condi-
tional densities fk|k−1(·|·) and gk(·|·) used in the recursion
(3-4) can be systematically constructed from the underlying
physical model of the sensors, individual target dynamics,
target births and deaths using FISST.

Individual target motion in a multi-target problem is of-
ten modelled by a transition density on the state space Es

while the measurement process is modelled as a likelihood
on the observation space Eo. Consequently, the multi-target
transition density and likelihood are difficult to derive since
we need to compute Radon-Nikodym derivatives of proba-
bility measures on the subsets of F(Es) and F(Eo). On the
other hand, belief functions are defined directly on the sub-
sets of Es and Eo. Hence, models for multi-target motion
and measurement of the form

βk|k−1(S|Xk−1) ≡ P (Ξk ⊆ S|Xk−1)

βk(T |Xk) ≡ P (Σk ⊆ T |Xk)

can be systematically constructed (see [9]). However, as be-
lief functions are non-additive, their Radon-Nikodym deriva-
tives (or densities) are not defined. FISST [6], [9] provides
an alternative notion of density for a RFS based on the set-
derivative of its belief function [6].

Let B(E) denote the collection of subsets of E. The
set-derivative of a function F : B(E) → [0,∞) at a point
x ∈ E is a mapping (dF )x : B(E) → [0,∞) defined as [6]

(dF )x(T ) ≡ lim
λK(∆x)→0

F (T ∪ ∆x) − F (T )

λK(∆x)
,

where ∆x denotes a neighbourhood of x, and λK(∆x) is its
hyper-volume in units of K . This is a simplified version of
the complete definition given in [6]. The set derivative at a
finite set {x1, ..., xn} is defined by the recursion

(dF ){x1,...,xn}(T ) ≡ (d(dF ){x1,...,xn−1})xn
(T ),

where (dF )∅ ≡ F by convention.
For a function f = dF(·)(T ), the set-integral over a sub-

set S ⊆ E is defined as follows [6], [9]∫
S

f(X)δX ≡
∞∑

i=0

1

i!

∫
Si

f({x1, ..., xi})λ
i
K(dx1...dxi).

Central to FISST is the generalised fundamental theo-
rem of calculus

f(X) = (dF )X(∅) ⇔ F (S) =

∫
S

f(X)δX.

In the FISST framework, the optimal Bayes multi-target
filter has the same form as (3-4) where integrals are replaced
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ote that (dF )X(∅) has unit of K−|X|. Hence, the
density evaluated at two sets X1, X2 with different

er of elements would have different units. This lead
blems in obtaining the maximum a posteriori estimate
the units of the posterior density are not commensu-
[9].
e propose a unitless set-derivative by replacing λK in
finition of set-derivatives and set-integrals with the in-

measure λ of a unit rate Poisson point process. This
ivalent to introducing a unit cancelling constant. It is
o see that the generalised fundamental theorem of cal-
still holds. Moreover, using the dominating measure
by Eq. (5), we have for any U = ∪∞

i=0S
i,∫

U

f(X)µ(dX) =

∫
S

f(X)δX. (6)

ows from Eq. (6) that

(dβΞ)(·)(∅) = dPΞ/dµ = pΞ (7)

e set-derivative of the belief function βΞ is the den-
Ξ of the corresponding probability measure PΞ with
t to the dominating measure µ (to see this, note that
y U = ∪∞

i=0S
i,

∫
S

pΞ(X)δX =
∫
U

pΞ(X)µ(dX) =
) = βΞ(S)). Consequently,

|k−1(Xk|Xk−1) = (dβk|k−1(·|Xk−1))Xk
(∅),

gk(Zk|Xk) = (dβk|k(·|Xk))Zk
(∅).

SST converts the construction of multi-target densi-
om multi-target models into computing set-derivatives
ief functions. Procedures for analytically differenti-
belief functions have also been developed [6], [9] to
ate the task for practising tracking engineers.
general, the multi-target dynamic model (1-2) yields

llowing multi-target Markov transition and likelihood

−1(Xk|Xk−1)∑
W⊆Xk

sk|k−1(W |Xk−1)nk|k−1(Xk − W |Xk−1)(8)

Zk|Xk) =
∑

W⊆Zk

θk(W |Xk)ck(Zk − W |Xk). (9)

sk|k−1(·|Xk−1) is the density of the RFS Sk(Xk−1)
viving targets, nk|k−1(·|Xk−1) is the density of the
k(Xk−1) of new-born targets, θk(·|Xk) is the density
RFS Θk(Xk) of target generated observations and
k) is the density of the RFS Ck(Xk) of false alarms.

hat the difference operation used in (8-9) is the set dif-
e. The reader is referred to [6], [9] for details on how
(·|Xk−1), nk|k−1(·|Xk−1), θk(·|Xk) and ck(·|Xk)

e derived from the underlying physical model of the
rs, individual target dynamics, target births and deaths.



2.3. The PHD Filter

The probability hypothesis density (PHD) filter is a 1st or-
der approximation of the Bayes multi-target filter. It pro-
vides a much cheaper alternative by propagating the 1st mo-
ment in stead of the full multi-target posterior [10].

A finite subset X ∈ F(E) can also be equivalently rep-
resented by a generalised function

∑
x∈X δx, where δx de-

notes the Dirac delta function centred at x. Consequently,
the random finite set Ξ can also be represented by a random
density

∑
x∈Ξ δx. These representations are commonly used

in the point process literature [1], [12].
Using the random density representation, the 1st mo-

ment or (PHD) DΞ of a RFS Ξ is defined by

DΞ(x) ≡ E

∑
y∈Ξ

δy(x)

 =

∫ ∑
y∈X

δy(x)PΞ(dX). (10)

The PHD DΞ is a unique function (except on a set of mea-
sure zero) on the space E. Given a subset S ⊆ E, the PHD
measure of S, i.e.

∫
S

DΞ(x)λ(dx), gives the expected num-
ber of elements of Ξ that are in S. The peaks of the PHD
provide estimates for the elements of Ξ.

Let γk denote PHD of the RFS Γk of targets which
appear spontaneously; bk|k−1 ( ·| ξ) denote the PHD of the
RFS Bk|k−1({ξ}) spawned by a target with previous state
ξ; ek|k−1 (ξ) denote the probability that the target still exist
at time k given that it has previous state ξ; fk|k−1 ( ·| ·) de-
note the transition probability density of individual targets;
gk ( ·| ·) denote the likelihood of individual targets; ck de-
note clutter probability density; λk denote average number
of Poisson clutter points per scan; and pD denote proba-
bility of detection. Define the PHD prediction and update
operators Φk|k−1, Ψk respectively as

(Φk|k−1α)(x) =

∫
φk|k−1(x, ξ)α(ξ)λ(dξ) + γk(x), (11)

(Ψkα)(x) =

[
υ(x) +

∑
z∈Zk

ψk,z(x)

κk(z) + 〈ψk,z , α〉

]
α(x), (12)

for any integrable function α on Es, where

φk|k−1(x, ξ) = ek|k−1(ξ)fk|k−1(x| ξ) + bk|k−1(x| ξ),

υ(x) = 1 − pD(x),

ψk,z(x) = pD(x)gk(z|x),

κk(z) = λkck(z).

Let Dk|k, denote the PHD of the multi-target posterior
pk|k. Assuming that the RFS involved are Poisson, it was
shown in [10] that the PHD recursion is given by

Dk|k =
(
Ψk ◦ Φk|k−1

) (
Dk−1|k−1

)
. (13)

Since the PHD is a function defined on the space where
individual targets live, its propagation requires much less
computational power than the multi-target posterior.
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3. SEQUENTIAL MONTE CARLO
IMPLEMENTATIONS

ropagation (3-4) of the multi-target posterior density
ively in time involves the evaluation of multiple set
als and hence the computational requirement is much
intensive than single-target filtering. Sequential Monte
(or particle) filtering techniques permits recursive prop-
n of the set of weighted random samples that approx-
the full posterior [3].

MC implementation of the optimal Multi-target

FISST framework, what does it mean to sample from
f density? and how can we approximate a belief den-

y random samples?. The answers to these questions
Eq. (7) i.e. the belief density of a RFS in FISST is in-

density of the corresponding probability distribution
RFS (see Section 2.2). Sampling from a belief den-
equivalent to sampling from the probability density
proximating a belief density is the same as approxi-

g a probability density.
e single-target particle filter can be directly gener-
to the multi-target case. In the multi-target context,
er, each particle is a finite set and the particles them-
can thus be of varying dimensions.

ssume a set of weighted particles {w
(i)
k−1, X

(i)
k−1}

N
i=1

enting the multi-target posterior pk−1|k−1 is available.
article filter proceeds to approximate the multi-target
ior pk|k at time k by a new set of weighted particles

X
(i)
k }N

i=1 as follows

Particle Multi-target Filter

e k ≥ 1,
ep 1: Sampling Step

For i = 1, ...,N , sample eX(i)
k

∼ qk

“
·|X

(i)
k−1, Zk

”
and set

ew(i)
k

=
gk

“
Zk| eX(i)

k

”
fk|k−1

“ eX(i)
k

˛̨̨
X

(i)
k−1

”
qk

“ eX(i)
k

˛̨̨
X

(i)
k−1, Zk

” w
(i)
k−1.

Normalise weights:
PN

i=1 ew(i)
k

= 1.

ep 2: Resampling Step

Resample
n ew(i)

k
, eX(i)

k

oN

i=1
to get

n
w

(i)
k

, X
(i)
k

oN

i=1
.

e importance sampling density qk (·|Xk−1, Zk) is a

target density and X̃
(i)
k ∼ qk( ·|X

(i)
k−1, Zk) is a sam-

om a RFS or point process. Sampling from a point



process is well studied see for example [1], [12] and refer-
ences therein.

After the resampling step, an optional MCMC step can
also be applied to increase particle diversity [5]. Since the
particles reside in spaces of different dimensions, a reversible
jump MCMC step [7] is required. Under standard assump-
tions, convergence results for particle filters also apply to
the multi-target case [2].

From the multi-target posterior pk|k, an estimate of the
target set at time k can be given by the expected a poste-
riori estimator [6], [9]. This estimator is the 1st moment
(or PHD) Dk|k (see Section 2.3 Eq. (10)). Given a particle

approximation {w
(i)
k , X

(i)
k }N

i=1 of pk|k, the particle approx-
imation of Dk|k is then

Dk|k(x) =

∫ ∑
y∈X

δy(x)Pk|k(dX |Z0:k)

≈
N∑

i=1

∑
y∈X

(i)
k

w
(i)
k δy(x)

The main practical problem with the multi-target par-
ticle filter is the need to perform importance sampling in
very high dimensional spaces if many targets are present.
Moreover, it can be difficult to find an efficient importance
density and the choice of a naive importance density like
qk( ·|X

(i)
k−1, Zk) = fk|k−1( ·|X

(i)
k−1) will typically lead to

an algorithm whose efficiency decreases exponentially with
the number of targets for a fixed number of particles.

3.2. SMC implementation of the PHD filter

The PHD filter is a cheaper alternative. However, direct ap-
plication of standard SMC methods to propagate the multi-
target PHD would fail because firstly, the PHD is not a prob-
ability density function; and secondly, it is not a standard
Bayes recursion. In this section we summarise the SMC
implementation of the PHD filter proposed in [13].

For any k ≥ 0, let αk = {w
(i)
k , x

(i)
k }Lk

i=1 denote a parti-
cle approximation of Dk|k. Using the PHD recursion, a par-
ticle approximation of the PHD at time step k > 0 can be
obtained from a particle approximation at the previous time
step by the following procedure (see [13] for the derivation)

SMC PHD filter

At time k ≥ 1,
Step 1: Prediction

• Sample

ex(i)
k

∼

(
qk

“
·|x

(i)
k−1, Zk

”
, i = 1, ..., Lk−1

pk ( ·|Zk) , i = Lk−1 + 1, ..., Lk−1 + Jk
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ep 2: Update
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ep 3: Resampling
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ote that the computational complexity of this algo-
is independent of the (time-varying) number of tar-

f we fix the number of particles Lk = L for all k.
ver, this can result in instances where the number of
les are not sufficient to resolve a large number of tar-
hile at other times we may have an excess of parti-

or a small number of targets. On the other hand, if
Lk−1 + Jk, then Lk increases over time even if the

er of targets does not. This is very inefficient, since
utational resource is wasted in exploring regions of the
pace where there are no targets. It would be computa-
ly more efficient to adaptively allocate approximately
particles per target at each time step.
nce the expected number of targets
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4. SIMULATIONS

For visualisation purposes, consider a one-dimensional sce-
nario with an unknown and time varying number of targets
observed in clutter. The states of the targets consist of 1-
D position and 1-D velocity, while only position measure-
ments are available. Without loss of generality, we con-
sider targets with linear Gaussian dynamics. We assume a
Poisson model for spontaneous target birth with intensity
0.2N ( ·| 0, 1). Each existing a target has a (state indepen-
dent) probability of survival e = 0.8. The clutter process is
Poisson with uniform intensity over the region [−100; 100]
and has an average rate of 10. Figure 1 shows the tracks with
clutter on the position measurements and Figure 2 plots the
PHD of position against time. Observe from Figure 2 that
the PHD filter shows surprisingly good performance, even
very short tracks are picked up among clutter.
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5. CONCLUSION

In this paper, we have highlighted the relationship between
Radon-Nikodym derivative and set derivative of random fi-
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ts. This allows the derivation of a generic particle fil-
estimating an evolving random finite set. In addition,
ential Monte Carlo implementation of the probabil-

pothesis density filter for multi-target tracking is also
. With a computational complexity that is independent

(time-varying) number of targets, this offers a very
cal alternative to the particle random set filter.
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